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Prediction and Measurement of Natural Vibrations of
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The results of an analytical and experimental study to determine the first three natural fre-
quencies of a four-stage research rocket are presented. A matrix recurrence equation is given
which provides a convenient means for solving for the fundamental and higher modes of
oscillation of the structure. Vibration tests were performed in a vertical fixture that afforded
good unrestrained characteristics in one plane of motion. The results of studies of the effects
of looseness in interstage connections, the unsymmetric behavior of a supposedly symmetrical
structure, nonlinear characteristics, and an empirical treatment of joint flexibility are dis-
cussed. Good agreement between the calculated and measured data is shown.

Nomenclature
5] = matrix of mass characteristics
Cu = coordinate about the z origin to joint u, in.
[D(s)] = special sweeping matrix for the sth mode
E = modulus of elasticity, psi
1 = moment of inertia of structural cross-sectional area,
in.t
L = overall length of the vehicle, in.
p—1
m = total mass of the system = > m,, Ib-sec?/in.
r=0
Mr = rth discrete mass, lb-sec?/in.
My = mass distribution per inch of length, lb-sec?/in.2
n = number of the highest mode sought in the solution
P = number of discrete masses representing the system
P = radius of gyration of the system about the center of
gravity, in.
v = total number of elastic joints considered in the system
x = coordinate having its origin at the center of the zeroth
mass, in.
Zr = z coordinate to the rth discrete mass, in.
x = distance to the center of gravity of the total discrete
mass system from the z origin, in.
Yr = displacement of the rth mass, in.
YL = tip deflection used for normalizing mode data, in.
y(s) = rth coefficient of the modal column for the sth mode,

in.
parallel coordinate system to x having its origin at the
aftermost point of the vehicle, in.
g5 = deflection influence coefficient for beam deflection
only; deflection at 2 = z; due to a unit load at z =
z; when cantilevered at x = 0, in./lb.
8:,5(u) = deflection influence coefficient considering elastic rota-
tion of joint w only; deflection at x = z; due to a
unit load at x = z; when cantilevered at z = 0,
in./lb

n
I

Ky = joint rotation constant for joint u, rad /in.-1b

or,n = total deflection influence coefficient considering beam
and joint contributions; deflection at z = z, due to
a unit load at 2 = x, when cantilevered at z = 0,
in./lb

ws = circular frequency for vibrations of the sth free-free

natural mode, rad/sec

Matrix notation

(LULIL L) 11

designate column, diagonal, square,
row, and unit matrices, respectively

Presented at the ARS Launch Vehicles: Structures and Ma-
terials Conference, Phoenix, Ariz., Apr11 3-5, 1962.

1 Aero-Space Technologist.

2 Aero-Space Technologist.

N the design of slender multistage boosters for upper at-

mospheric and space research probes, the accurate deter-
mination of the natural vibrations of the structure for flight
conditions is an essential effort in the engineering program.
Many of these vehicles are spin stabilized to prevent the
vehicle from executing undesirably large dispersions with
respect to the programmed trajectory. Spinning of the
vehicle, however, introduces the possibility of incurring
resonance or near resonant vibrations during flight. The high
dynamic loads that result from spin resonance combined with
the many other loads that a vehicle normally encounters in

- atmospheric flight would be a sure cause of failure for most:

highly optimized structures.

Frequently, an accurate knowledge of the natural frequen-
cies, including experimental verification, is desirable in
vehicles where the spin stabilization programs with their wide
tolerances in spin rate fall in the narrow band between the
short-period aerodynamic frequency and the first natural
frequency of body bending. In addition, an understanding of
the inherent frequencies that are likely to be experienced in
the structure is of value in establishing proper instrumenta-
tion for monitoring environmental responses. Modal informa-
tion is also essential to proper positioning of guidance sensing
devices and for investigating the stability characteristics of
vehicles with closed loop control systems. The orthogonal
properties of the mode shapes make them desirable functions
for use in series solutions involving generalized coordinates,
widely known as “modal form solutions.”

The transient mass and structural characteristics of a typi-
cal multistage rocket vehicle require that natural mode evalua-
tions-be made, at least for the ignition and burnout times of
each stage of flight and frequently at other points of investi-
gation, such as Mach 1, maximum dynamic pressure, and
minimum stability. Transient wind response studies de-
veloped around modal form solutions that consider variable
coefficients in the equations of motion frequently require that
the natural modes and their related properties be defined as
often as 10 times during first-stage flight. These stringent re-
quirements involve substantial engineering effort and thereby
justify the development and organization of adequate tech-
niques for calculating modal data. They also emphasize the
importance of performing experimental investigations to as-
certain the suitability of the methods used.

In this paper, equations of motion are presented for the
free-free natural vibrations of rocketlike structures, and results
of the application of the equations to an actual four-stage
space test vehicle are given. The analytical procedure con-
sists of a matrix formulation that permits the coordination of
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many computational stages into a single matrix equation from
which the frequencies and mode shapes of the system can be
obtained.

A comparison. between the calculated and measured
natural frequencies and mode shapes is furnished. Considera-

tion is also given, in the experimental test program, to the .

lack of symmetry in a supposedly symmetrical vehicle, the
linearity of response, structural damping, and the influence of
looseness in the serewed joints.

Apparatus and Test Procedure

Description of Apparatus
Test vehicle

The full-scale four-stage solid propellant vehicle shown in
Fig. 1 was used as the test specimen. All of the rocket types
have been used, either individually or in combination in aero-
space research probes. The test vehicle was made of the
following rockets: first stage, Lance; second stage, Lance;
third stage, Recruit; fourth stage, T-55.

The condition studied was burnout of the first stage. The
second and third stages of the test vehicle were loaded with an
inert mass having about the same density and stiffness as the
solid fuel. Concentrated masses were added to the fourth
stage to simulate the fuel and instrumentation. The inter-
stage structural connections and separation devices employed
in the test vehicle were one-piece, externally threaded,
flanged bulkheads, generally referred to as blowout dia-
phragms. The stages are thus threaded together upon the
separation diaphragms. The effects of the looseness of these
interstage connectors on the natural frequencies of the system
were studied as part of the investigation.

Test stand

The suspension system shown in Fig. 1 was constructed so
that the vehicle, when placed in the vertical attitude, could
approach the unrestrained condition of free flight in one
plane. An adjustable clamp, supported by two cables
located in a longitudinal plane of the vehicle and positioned
at or near the lower nodal point, supported the vehicle’s weight
without contributing a significant restraint to motions normal
to the plane of the cables. An upper support stabilized the
vehicle in the upright position and was composed of two
spring-loaded cables running normal to the vehicle’s center-
line and in the plane of the lower support cables. This sup-
port was located at or near an upper nodal point. During
the tests it was found that the upper support could be loosened
and the vehicle easily could be held vertically by holding it by
hand at the upper nodal point.

Shaker system

A 50-1b vector force electromagnetic exciter was connected
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Fig. 2 Vehicle mass distribution

to the vehicle at a point 104 in. from the bottom of the first
stage, as shown in Fig. 1. The exciter proved to be well
matched to the vehicle for purposes of driving the first three
natural modes of the system.

Instrumentation

Eight strain-gage accelerometers were located along the
length of the vehicle, two on each stage near the junctions, to
measure displacements at the stations. The outputs from
the accelerometers were fed through amplifiers to an oscillo-
graph recorder for permanent records of the vibration data.
The accelerometer data were reduced to obtain the natural
frequencies, mode shapes, and structural damping of the
vehicle. The accelerometers were attached to an adapter de-
signed in such a manner that a cavity between the adapter
and the vehicle could be evacuated with a vacuum pump to
enable the accelerometer to be held in place by means of
atmospheric pressure.

Test Procedure

The first three mode shapes and the corresponding fre-
quencies of the vehicle were determined with the lower sus-
pension support or clamp at two different station locations
(tests 1 and 2) and with the vehicle rotated 90° about the
axis of symmetry from the original condition (test 3). The
latter test was conducted to investigate the possibility that
allowable tolerances in machining mating parts and fabrica-
tion tolerances might result in unsymmetrical bending stiff-
ness of the joints. Theoretically, in all aspects, the vehicle
was designed to be symmetrical about the longitudinal axis.

Measurements were also made to determine the effects of
joint tightness and amplitude of oscillation on the frequency
of the first natural mode with the vehicle suspended as during
test 3. In order to study the effects of joint looseness, vibra-
tion tests were made with the joints between the first and
second stages unwound by increments to 80° of relative rota-
tion. The stages separated at the rate of 0.00046 in./deg of
rotation.

The accelerometer on the first stage nearest the exciter was
employed as the control instrument and was used to define
the amplitude of oscillation. The damping coefficient was de-
termined by observing the decay of the vibrations.

Vehicle Structural Properties

The optimum strength-weight requirements on space
vehicles result in highly complicated structures whose mass
and stiffness distributions are difficult to establish. In Fig. 2
the mass per inch parameter of the test vehicle is plotted
against the normalized axial coordinate z/L. These data il-
lustrate the severe lack of symmetry and the wide departure
of the typical launch vehicle from the uniform distribution.
The total weight of the vehicle as tested was 2687 Tb. - Two
coordinate systems are referred to in this paper and are indi-
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Fig. 3 Vehicle flexural stiffness distribution

cated on Fig. 2. The z coordinate defines distances along the
length of the vehicle from the aftermost point, and the z coor-
dinate is parallel to z but has its origin at 2z = 13.36 for the
test vehicle. The x origin is the center of the first mass (my)
of the equivalent discrete mass system used in the analysis.

In Fig. 3, the discontinuous and highly variable nature of
the flexural stiffness coefficient ET is shown. These data il-
lustrate the typical complexity of rocket structures and the
degree of definition used in defining the function for an ac-
curate calculation of the natural modes and frequencies. The
transition sections between the standard rocket motors are
the most difficult regions to define and generally are the
spaces that contribute a major part to the flexibility. In
computing the ET data of Fig. 3, all changes in diameter of
the load carrying structure were considered mechanically
without modifications or devising equivalent systems. In
regions where this technique failed to express adequately the
nature of the flexure, rotation constants were employed which
are discussed in a subsequent section.

Analytical Procedures

Equations of Motion

The analytical process that was used for computing the
theoretical frequencies and mode shapes for the study is
derived and discussed in detail by Alley and Gerringer.> The
analysis is developed around a discrete mass representation of
the continuous system and the load-deflection relationships
are equated by use of deflection influence coefficients. The
inherent nature of the discrete mass-influence coefficient type
of problem makes it ideal for matrix notation, and the use of
matrices permits the expression of a single final equation from
which both the frequencies and natural mode shapes can be
obtained. The following equation, obtained from Eq. [20]
of the paper by Alley and Gerringer, is the general matrix
expression from which both the fundamental and higher
natural modes of vibration were computed by matrix iteration.

(/w2m){y()} = [Bllo,.llm,/ml[D(s)l{y,(} (1]
r=123...p—1

where the various parametric matrices are defined as follows:

m= [ [l -5

{1} l_1+
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3 Alley, V. L., Jr. and Gerringer, A. H., “A matrix method for
the determination of the natural vibrations of free-free unsym-
metrical beams with application to launch vehicles,” NASA
TN D-1247 (1962).
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mode and frequency are desired, the s = 1 through s — 1
modes must have been previously determined. If the number
of discrete masses representing the system is p, then the order
of the given matricesis p — 1. There are p — 1 linearly inde-
pendent eigenvectors, of which p — 2 are the flexible mode
shapes, and one, associated with a zero eigenvalue, has no

* physical significance. The B matrix is a distinct function of

the mass characteristics of the system. The o,,, matrix con-
tains the basic flexural relationships of the system. The D(s)
matrix is a special sweeping matrix appropriate to the specific
orthogonality relationships of the modal columns. The ortho-
gonality relationships differ from most other similar solutions
because the modal columns are not complete for the system
in that y., is omitted. The orthogonality relationship ap-
plicable to the incomplete modal column is

5,(8) ~ yo(@) Jim,/mUy(N} = 0 P77 (2]

and the omitted end displacement y,(2) from the modal column
y-(7) is readily obtained by

) = — —2— 1) m/m1{z,0)} 3]

me/m

where y, fails to appear in the modal column, since the origin
of the = coordinate system and the reference for the influence
coefficients are taken at the position of my. This selection for
the position of the z origin is advantageous in that it reduces
the order of the matrices to p — 1 for a system having p
masses.

Number of Discrete Masses

The number of masses used in Eq. [1] should be based pri-
marily on the accuracy desired for the highest mode to be ex-
tracted and the capability of available computing equipment
to handle large matrix iterations. The results of a study of the
influence of the number of masses on the errors in frequency
and mode shapes of a uniform free-free beam are given in the
paper by Alley and Gerringer. It was found that, for the
first five modes, errors in frequency resulting from lumping
mass can be held to within 1%, by the use of the following
approximate rule: p = 13(n)!/3, where n is the number of the
highest mode desired and p is the number of masses to be used.
This rule is stated to afforded an approximate guide for
establishing the number of masses to be used in calculating
asymmetrical beam systems such as the rocket vehicle con-
sidered in this paper. The computed modal data submitted
with this report were calculated considering 31 discrete masses
(p = 31). This number should effectively remove all sig-
nificant lumping errors from the computed data.

Influence Coefficients

The influence coefficients o-,, required in Eq. [1] must be
cantilever beam influence coefficients fixed at the z origin.
The appropriateness of the influence coefficients in represent-
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ing the actual structure will depend largely upon the skill of
the analyst in interpreting the structural plans and the in-
clusion of secondary effects when necessary. The influence
coefficients used in the determination of the calculated data
for this paper were computed by consideration of elementary
beam flexure with the addition of local rotations due to
joints. The influence coefficients were expressed in two
parts:

U=

G = a;; + Z 8(u)s,s (4]
u=1

where a;,; is that portioh of the influence coefficient resulting
from beam flexure only and given by

zi g?

Edﬁ—(%;-{-xi) X

Q;; =

z

iz .
, dx—l—x,x,fo EI jzi [5]

and 8(u);,; is the contribution to the influence coefficient due
to local rotation of the uth joint of which there are v such
joints. Itisgiven by

0(u)i,i = kulz; ~ cu)(@: — ¢u) valid when x;, z; > ¢, [6]
= 0 when 2;, ; £ ¢,

The influence coefficients applicable to the specific problem
are obtained by a point-by-point summation of deflections
due to the rotation of the joints and the deflections resulting
from flexure of the structure. The use of Maxwell’s reciprocal
law oi,; = o;,: substantially reduces the necessary computa-
tions.

From Eq. {5] it can be seen that the evaluation of the in-
fluence coefficients will involve the determination of the in-
tegrals of the functions z?/EI, z/EI, and 1/EI. In most
actual applications, these integrals must be determined by
numerical integration. Results of an investigation of the
error in the natural frequencies of a uniform beam which may
be associated with the use of trapezoidal integration are given
in the forementioned paper by Alley and Gerringer (see foot-
note 3). It was found that the integration errors introduced
by the trapezoidal process tend to counteract the errors in-
troduced by the discrete mass analogy, and it was indicated
that the maximum size of the integration interval should not
exceed g% of the vehicle’s length.

Joint Rotation Effects

It has been observed in many rocket vehicles that sig-
nificant local contributions to flexure frequently originate at
joints and that these joint effects must be included in analyses
involving flexure. Contributions of the joints to the deflec-
tions generally defy rigorous analytical description. Such
contributions are consistently encountered from looseness in
screwed joints, thread deflections, flange flexibility, plate and
shell deformations that are not within the confines of beam
theory, ete. Since it is generally impractical to evaluate these
effects analytically, the problem has been treated empirically
at NASA Langley Research Center with satisfactory results
in the determination of natural vibration characteristics and
aeroelastic problems. From limited measurements and
observations of the inordinate behavior of typical rocket
vehicle joints, the order of magnitude of rotations resulting
from moment loading have been noted and recorded as “joint
rotation constants.” These constants k, are defined as the
measure of the local rotation of the structure due to the ap-
plication of bending moment, radians per inch-pound.

Admittedly, many typical local deflections are highly in-
ordinate and nonlinear, and, for such cases, the linear em-
pirical approach can only hope to provide an equivalent
effect. Also, experience has shown that considerable variation
in the behavior of similar joint designs can result from varia-
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tion in fabrication skill. However, it should be kept in mind
that estimates of «x, are approximations to what should
normally be a secondary influence in a good design, and it is
upon this premise that such empirical means have been em-
ployed resulting in consistently improved accuracy of modal
data. Invariably, computed mode data on rocket vehicles
which disregard such local influences will result in frequencies
higher than actual; therefore, any reasonable approximation
to joint behavior will move the computed results in the proper
direction. Nevertheless, the possibility of assuming joint
factors unreasonably large does exist, and consequently such
efforts may result in greater errors than would be experienced
if totally ignored. A guide to joint evaluation which should
provide a simple means for approximating the joint rotation
constants in a typical rocket vehicle is submitted as Fig. 4.
A variety of typical rocket vehicle joints are illustrated and
classified from excellent to poor in light of their stiffness on
Fig. 4a. Repeated experiences with bending resulting from
local joint rotations has led to the classification shown. The
curves of Fig. 4(b) were constructed around 10 measured
quantities of . for a variety of different classes of joints. Be-
cause of the limited quantity of measured data, the curves
that show the variation in k, with diameter were not em-
pirically established but were based on the assumption that
k4 18 inversely proportional to the third power of the diameter.
This is in accordance with the theoretical variation in flexibil-
ity of geometrically similar joints, and the resulting curves
proved to be in good agreement with the measured data. In-
formation of the type of Fig. 4 is primarily useful to designers
who repeatedly are using the same types of joints in a variety
of rocket vehicle assemblies.

It is improbable that the factors contributing to so-called
joint rotation effects will ever be completely amenable to
analytical treatment, which leaves, then, two major avenues
of approach to their solution: first and most appropriate, to
design structures to avoid most of the geometries that defy
analysis and permit inordinate behaviors; and second, as a
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last resort, to use empirical joint rotation data such as sub-
mitted in Fig. 4 for various classes of fabrications.

The data submitted as Fig. 4 are from limited observations,
and considerable improvement in this approach should re-
sult from a finer classification of hardware and from a greatly
increased sampling of joint data.

Results and Discussion

Presentation of Results

Typical results of the experimental measurements and the
analytical study of the first three natural mode shapes of the
four-stage test vehicle are presented in Fig. 5. The experi-
mentally and analytically determined frequencies of the first
three natural modes are presented in Fig. 6. The results of an
experimental study of the effects of joint looseness on the re-
sponse of the test vehicle are presented in Figs. 7 and 8. The
damping coefficient, which is the familiar structural damping
coefficient g defined as the ratio of twice the equivalent
viscous damping to the critical damping, was determined also
for the vehicle for the outputs of the accelerometers during
the decay of the oscillations and was found to be of the ex-
pected magnitude, namely, in the order of 0.04, 0.05, and 0.06
for the first, second, and third modes, respectively.

Comparison of Experimental and Analytical Results

Typical results of the experimental and analytical studies
of the first three mode shapes are shown in Fig. 5. The data
are presented on a plot having the normalized deflection as
the ordinate and the normalized length of the vehicle as the
abscissa. The analytically determined mode shapes are indi-
cated by the solid curves, and the normalized experimentally
determined deflections are shown as the open symbols. Tests
were conducted with various driving forces, support loca-
tions, and with the driving force applied in either the normal

! 1]

FORCE
CALCULATED| TEST | [ TEsT 2 [ TeEsT3
MODE |FREQUENCIES! EXPERIMENTAL FREQUENCIES
! 546 541 546 5.36
2 1145 1054 . 1062 10.33
3 1982 17.22 18.24 15.88

(ALl FREQUENCIES GIVEN IN CYCLES PER SECOND}

Fig. 6 Comparison of experimental and calculated natural
frequencies for three test conditions
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or transverse plane. The results show that the computed
mode shape is in excellent agreement with the measured
mode shapes for all test conditions. Neither the magnitude
of the driving force, the location of the lower support, nor the
rotation of the vehicle about its longitudinal axis had any
appreciable effect on the first two mode shapes. It was ob-
served, however, that there was a small deviation between the
measured and calculated third mode shape in the upper stage
when the vehicle was rotated 90°.

The results of the experimental and analytical study of the
first three natural frequencies are shown in Fig. 6. The data
are presented in tabular form showing a comparison of calcu-
lated frequency to the average measured frequency for the
three test conditions. The average of the first mode fre-
quencies determined in all test conditions differed from the
calculated frequency by less than 19,. For all cases measured,
there was a spread in the test data of 2%,. The agreement of
the test 2 results, where the position of the lower support was
nearly ideal, was excellent. The frequency of the vehicle for
the same support position, but with the vehicle rotated 90°
about its longitudinal axis, was within 29, of the calculated
value.

The average measured frequency for the second mode was
about 89, lower than the calculated values. There was a
spread of 49, in the measured natural frequencies of the
second mode. The second mode test results supported the
findings in the first mode studies of different vibration charac-
teristics for motions in longitudinal planes normal to each
other. A 3%, reduction in second-mode frequency was ob-
served in test 3 for the vehicle rotated 90° about its longi-
tudinal axis.

The average measured frequency of the third mode was
129, lower than the calculated. There was a spread of 189,
in the value of the experimentally determined frequencies.
The lack of symmetry for oscillations in longitudinal planes
normal to each other was quite apparent in the third mode.
A 129, reduction in the third-mode frequency was recorded
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Fig. 8 Variation of natural frequency of first mode with joint
looseness and amplitude of oscillation
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in test 3 when exciting the vehicle normal to the test plane of
tests 1 and 2. The reduction in frequency for motions in the
90° plane was consistent for all three modes. A shift in third-
mode frequency of approximately 6% was attributed to
changing the lower support location. It was observed con-
sistently that all modes displayed decreases in frequency as
the lower support position was moved toward the nodal points
of the modes.

The observed variations in the measured values of the
natural frequencies are probably due to the nonlinearities of
the vehicle and limitations on obtaining sharp peak responses
of the build-up structure.

The high length-to-diameter ratio of the test vehicle imple-
ments the belief that, for the three modes investigated, rotary
inertia and shear omissions in the calculations could hardly
account for the difference observed in the frequencies of the
second and third modes. Furthermore, the errors introduced
by the process of lumping the masses are unlikely the source,
since such effects should be well below 19,. The previously
mentioned rule, 13(n)!/3, for determining the number of
masses compatible with a 19} error indicated that 19 masses
would have been sufficient for controlling errors to within 19.
The use of 31 masses in the analysis should limit errors due to
the discrete mass representation of the continuous system to
considerably less than 19.

It then appears that the differences between the measured
and calculated natural frequencies are probably due to the
inadequate analytical representation of the vehicle’s stiffness
properties. This is reasonable to expect in light of the ex-
treme complexity of the structure of a typical space vehicle
and always will be a fertile source of error which will vary
considerably with the skiil and intuition of the analyst. No
generalization can be made as to the influence of inadequate
representation of structural and mass characteristics on the
various modes, since the significance of such discrepancies on
a given mode depends strongly upon the location of such
errors. For instance, an overlooked region of flexibility will
not alter the frequency of a mode if it coincides with, or is
near, an inflection point, but it can have a large effect on
another mode where such favorable conditions do not exist.

It should also be noted that complicated structures of the
type of the test vehicle frequently exhibit flexural nonlinearity
to some degree. In comparing the measured results with the
results of the calculations based on an agsumed linear system,
the best agreements are generally to be expected for the lowest
amplitudes of oscillations. No strong correlation of this
nature can be drawn, however, from the results of the tests
reported herein, since the different levels of excitation effected
increases in frequency with increases in driving forces in some
cases and reduction in frequency in others. From the data
presented and discussed in the following section, with loose-
ness existing in the joint, the frequency-amplitude relation-
ship appears to be of the expected behavior. The decreasein
frequency with increase in the amplitude of oscillation for the
low-level vibration is in agreement with the behavior of some
nonlinear systems. Another indication of nonlinear system
was exhibited, in tuning the system to a particular mode, by a
jump from a high amplitude of oscillation to a lower amplitude
as the frequency was varied. Care was taken in tuning the
system to obtain the maximum amplitude of oscillations.

Effects of Joint Looseness and Amplitude of Oscillation

The effects of looseness in the screw joint between the
second and third stages on the first natural frequency of the
test vehicle are indicated on Fig. 7 as a function of amplitude
of oscillation. The frequency data obtained for various
amounts of joint looseness are shown as the open symbols
with curves faired through the data to emphasize trends.

As the amplitude of oscillation (measured by the ac-
celerometer nearest the exciter) is increased, the natural fre-
quency at first decreases and then at larger amplitudes in-
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creases. This behavior is attributed to the nonlinear charac-
teristics of the loose joint. For small amplitudes of oscilla-
tion, the weight of the upper stages holds the screw threads
firmly in contact throughout a eycle, and the natural fre-
quency is therefore essentially the same as for the tight joint.
At larger amplitudes of oscillation, the joint is rocked back
and forth through the free play of the loose threads, which re-
sults in an effective reduction in stiffness with a related re-
duction in frequency. For large amplitudes of oscillation,
the backlash contribution to deflection becomes a secondary
part of the total flexure, and the natural frequency approaches
the initial value for the tight joint.

A cross plot of the data of Fig. 7 is presented as Fig. 8.
These curves clearly show the variation in frequency with un-
winding in the joint between the second and third stages of the
vehicle. It is interesting to note that partial recovery in fre-
quency is observed for the larger values of unwinding in-
vestigated.

Studies similar to those for which the results are given in
Figs. 7 and 8 were made also for unwinding of the joint be-
tween the first and second stages of the test vehicle. The
trends were in all respects similar to the variations observed
for the joint between the second and third stages discussed
previously.

Conclusions

As a result of the experimental and analytical investigation
of the vibration characteristics of the four-stage solid propel-
lant vehicle reported herein, the following econclusions can be
made:

1) The results show that the averages of the measured
natural frequencies are within 1, 8 and 129 of the calculated
frequencies for the first, second, and third modes, respec-
tively.

2) The mode shapes of the first three modes were ac-
curately predicted by the analytical procedure presented.

3) Variations in the location of the lower suspension
system clamp on the vehicle, in relation to the nodal points,
did not appreciably affect the free-free natural mode shapes
and frequencies for the first and second modes. A small
sensitivity to its position was observed by the associated
changes in the value of the third natural frequency.

4) With loose interstage connections, the frequency de-
pendency upon amplitude is typical of the nonlinear behavior
associated with systems having free play. As the amplitude
is increased gradually, the natural frequency first decreases
and then increases to the extent that, for the larger ampli-
tudes tested, the frequency had increased almost to the values
obtained for the tight system.

5) Reductions in the natural frequency of the first mode
of up to 209, were noted during unwinding of the screw joints
between the second and third stages. This natural frequency
of the vehicle tended to decrease with initial unwinding of the
serew joint between stages and then indicated a partial re-
covery toward its initial value for the larger angles of unwind-
ing. :

6) The structure, although designed to be geometrically
symmetrical about the longitudinal axis, showed a small but
consistent difference in the vibration charaeteristics of the
first three modes for tests in longitudinal planes 90° with
respect to each other. This unsymmetrical behavior indicates
that the inherent influences of tolerances and fabrication
effects might produce unpredictable variations in frequencies
of several percent in theoretically similar vehicles.

7) It is felt that the differences between measured and
computed frequencies primarily are due to the differences be-
tween the actual mass and stiffness of the vehicle and the
corresponding values used in the computations. These param-
eters are difficult to define in complicated space vehicles and
are subject to considerable variation due to the individual in-
terpretation of the structural load paths.



